Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-Allylphthalimide: parallel ribbons of $\boldsymbol{R}(10)$ motifs crosslinked by $\mathrm{C}_{\text {vinyl }}-\mathrm{H} \cdots \mathrm{O}$ bonds

Klaus-Dieter Warzecha,* Johann Lex and Axel G. Griesbeck

Institute of Organic Chemistry, University of Cologne, Greinstrasse 4, D-50939 Cologne, Germany

Correspondence e-mail:
klaus.warzecha@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.095$
Data-to-parameter ratio $=11.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound (systematic name: 2-allylisoindoline-1,3dione), $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$, the synperiplanar allyl substituent is orthogonal to the phthalimide ring plane. In the crystal structure, pairwise $\mathrm{C}_{\text {aryl }}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ bonds furnish ribbons of $R(10)$ motifs along the crystallographic b axis. Parallel layers of ribbons are crosslinked by additional $\mathrm{C}_{\mathrm{vinyl}}-\mathrm{H} \cdots \mathrm{O}$ bonds.

Comment

N-Allylphthalimide (2-allylisoindoline-1,3-dione), (I) is a valuable masked allylamine synthon. Previously reported applications include its hydrocarbonylation en route to β - and γ-amino acid derivates (Deloglu et al., 1984), a Pd-catalysed approach to substituted 1,4-dienes (Kaoet al., 1982) and the synthesis of cinnamylamines via a Heck-type arylation procedure (Malek et al., 1982).

(I)

We prepared the title compound, (I), in order to examine the influence of the allylic substituent on the photophysical and electrochemical properties of the phthalimide chromophore, which plays an important role as an electron acceptor in photo-induced electron-transfer reactions (Warzecha et al., 2006).

The structure of (I) is shown in Fig. 1; relevant geometric parameters are summarized in Table 1. The allylic substituent at the imide N atom of the planar phthalimide adopts a synperiplanar conformation; a similar orientation has been reported for 1,4-diallylquinoxaline-2,3(1H,4H)-dione (Mustaphi et al., 2001). In (I), the allyl group is orthogonal to the the phthalimide ring plane.

In the crystal structure, each molecule features pairs of $\mathrm{C}_{\mathrm{aryl}}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ bonds (Desiraju, 1991; Steiner, 2002) to its neighbours related by the symmetry operations ($1-x,-\frac{1}{2}+y$, $\left.\frac{3}{2}-z\right)$ and $\left(1-x, \frac{1}{2}+y, \frac{3}{2}-z\right)$. These interactions lead to infinite ribbons of $R_{2}^{2}(10)$ motifs (Etter, 1990; Etter et al., 1990), as illustrated in Fig. 2. The ribbons run in the direction of the crystallographic b axis and are staggered in a parallel fashion; the interplanar distance is 3.290 (1) \AA.

The packing is further stabilized by additional interlayer $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds perpendicular to the ribbon structure. In every molecule of (I), the carbonyl atom O 2 is a bifurcated hydrogen-bond acceptor. In the crosslinking $\mathrm{C}_{\mathrm{vinyl}}-$

Received 19 October 2006
Accepted 1 November 2006
\qquad

Figure 1
The molecular structure and the atom-labelling scheme for (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.

Figure 2
$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines) in the crystal structure of (I), forming cross-linked ribbons of $R(10)$ motifs.
$\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ bonds, $\mathrm{C} 11-\mathrm{H} 11 a$ of a molecule related by $(x$, $-y+\frac{1}{2}, z-\frac{1}{2}$), i.e. from a neighbouring ribbon, serves as a donor group.

Experimental

Phthalic anhydride (Acros) and allylamine (Merck) were used as received. A mixture of $3.7 \mathrm{~g}(25 \mathrm{mmol})$ phthalic anhydride and 2.15 g (38 mmol) allylamine was heated to reflux for 3 h . Recrystallization of the resulting crude material from ethanol furnished colourless blocks of the title compound ($4.97 \mathrm{~g}, 20 \mathrm{mmol}, 80 \%$; m.p. 345 K) suitable for X-ray diffraction.

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$
$M_{r}=187.19$
Monoclinic, $P 2_{b} / c$
$a=9.3914$ (3) А
$b=14.1284$ (5) $\AA \AA$
$c=7.1083$ (2) \AA
$\beta=106.094$ (1) ${ }^{\circ}$
$V=906.20(5) \AA^{3}$
$Z=4$
$D_{x}=1.372 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Block, colourless
$0.55 \times 0.35 \times 0.18 \mathrm{~mm}$

Data collection
Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: none
4595 measured reflections
1949 independent reflections
1330 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=27.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.095$
$S=1.01$
1949 reflections
165 parameters
All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0423 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\max }=0.27 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.033 (6)

Table 1
Selected bond and torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$113.56(10)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$126.28(13)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$5.3(2)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 2$	$-84.85(15)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1$	$93.13(14)$		

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\text {i }}$	$0.952(14)$	$2.411(14)$	$3.3568(17)$	$172.0(10)$
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 7 \cdots \mathrm{O}^{\text {ii }}$	$0.951(14)$	$2.451(14)$	$3.3933(18)$	$171.2(10)$
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O}^{\text {iii }}$	$0.963(14)$	$2.597(13)$	$3.4914(17)$	$154.6(10)$
Symmetry codes:	(i)	$-x+1, y+\frac{1}{2},-z+\frac{3}{2} ;$	(ii)	$-x+1, y-\frac{1}{2},-z+\frac{3}{2} ; \quad$ (iii)
$x,-y+\frac{1}{2}, z-\frac{1}{2}$.				

H atoms were located in a difference map and their parameters refined freely [range of refined $\mathrm{C}-\mathrm{H}$ distances $=0.93$ (2) -1.00 (2) \AA].

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and enCIFer (Allen et al., 2004).

The generous financial support of the Deutsche Forschungsgemeinschaft (DFG, Germany) and the Centre National de la Recherche Scientifique (CNRS, France) is gratefully acknowledged.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

organic papers

Deloglu, G., Faedda, G. \& Gladiali, S. (1984). J. Organomet. Chem. 268, 167174.

Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256262.

Hooft, R. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Kao, L.-C., Stakem, F. G., Patel, B. A. \& Heck, R. F. (1982). J. Org. Chem. 47, 1267-1277.
Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany
Malek, N. J. \& Moormann, A. E. (1982). J. Org. Chem. 47, 5395-5397.

Mustaphi, N. E., Ferfra, S., Essassia, E. M. \& Pierrot, M. (2001). Acta Cryst. E57, o176-o177.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
Warzecha, K.-D., Görner, H. \& Griesbeck, A. G. (2006). J. Phys. Chem. A, 110, 3356-3363.

[^0]: © 2006 International Union of Crystallography All rights reserved

